Surface Appearances

- Surface

- rough, matte, smooth, reflective, ...
- Lighting
- diffused, point, parallel, background, ...
- Camera
- white balance, iris, sensor, ...

Surface reflectance models

Determines how light is reflected by surface

- Essential in surface rendering
- Diffuse, specular, hybrid
- Difficulty in realistic rendering, e.g. skin, material

Surface reflectance function

- Bi-directional reflectance distribution function

$$
F_{B R D}(\mathbf{t})=F(\mathbf{s}, \mathbf{n}, \mathbf{v}, \lambda)
$$

t : a point on surface

- s: light source direction
- n : surface orientation
- v: viewing direction

人 λ : surface reflectance function

Surface reflectance models

- Lambertian
- Perfectly diffused
- Use to provide simple model of matte surfaces

Surface reflectance models

- Phong
- Diffused + Specular
- Most widely used model in computer graphics

Lambertian model

$$
R(p, q)=\eta \cos \left(\theta_{i}\right)+\sigma
$$

- R is the reflectance function
- p and q are partial derivatives of surface \boldsymbol{Z}, with $p=$ $\partial Z / \partial x$ and $q=\partial Z / \partial y$,
η is the composite reflectance combining light
source intensity E_{0} and intrinsic reflectance of surface material ρ
- θ_{i} is the incident angle between surface normal \mathbf{n}, and light source direction \mathbf{s}
- σ is the bias intensity

Photometric stereo

- Assume Lambertian reflectance model
- Calibrate light source direction
- Calculate local surface orientations from three reflectance images (why three images?)
- Integrate local surface orientations to obtain surface depth

Photometric stereo

- Simplified image irradiance equation for Lambertian reflectance model

$$
E(x, y)=\eta(x, y) \cos \left(\theta_{j}\right)
$$

- $E(x, y)$ are the intensity at point (x, y) in image, and

$$
\begin{gathered}
\cos \left(\theta_{i}\right)=\mathbf{n} \cdot \mathbf{s} /|\mathbf{n}||\mathbf{s}| \\
\mathbf{n}=(p, q,-1), \mathbf{s}=?
\end{gathered}
$$

Calibration

- Calculate the light source direction for each of the three light sources
- Use an object with know surface geometry and reflectance property, e.g. a sphere with diffuse surface
- Equation for sphere:

$$
r^{2}=x^{2}+y^{2}+z^{2}
$$

Calibration

Calibration

Recovery of surface normal

- Substitute calibrated light source directions back into image irradiance equation

$$
\begin{aligned}
& E_{1}=E_{01} \mathbf{n} \cdot \mathbf{s}_{1} I\left|\mathbf{n} \| \mathbf{s}_{1}\right| \\
& E_{2}=E_{02} \mathbf{n} \cdot \mathbf{s}_{2} I\left|\mathbf{n} \| \mathbf{s}_{2}\right| \\
& E_{3}=E_{03} \mathbf{n} \cdot \mathbf{s}_{3} I\left|\mathbf{n} \| \mathbf{s}_{3}\right|
\end{aligned}
$$

Solve for \mathbf{n} !

Recovery of surface normal

- Albedo independent PSM (Klette 1996)

$$
\mathbf{u}=\left(E_{01} \cdot E_{2}\left|\mathbf{s}_{\mathbf{2}}\right| \mathbf{s}_{1}-E_{02} \cdot E_{1}\left|\mathbf{s}_{1}\right| \mathbf{s}_{2}\right) \times\left(E_{01} \cdot E_{3}\left|\mathbf{s}_{\mathbf{3}}\right| \mathbf{s}_{\mathbf{1}}-E_{03} \cdot E_{1}\left|\mathbf{s}_{\mathbf{1}}\right| \mathbf{s}_{3}\right)
$$

\mathbf{u} is a vector collinear to \mathbf{n}
Calculate surface orientations independently of reflectance values

Integration of surface normal

- Local integration
- Start from background value, follow predefined path/s to obtain surface depth of future points from surface normals
- Four paths
- Global integration
- Transform spatial information into frequency domain, in which an integration becomes division by a factor
- Frankot-Chellappa

Post-processing of results

- Texture mapping
- Merging of surfaces into 3D model
- Visualisation
- VRML, PlyView, 3D Studio, ..., etc..

Summary

- Background knowledge about various shape recovery approaches (computer vision, non computer vision)
- Understand how reflectance may be used in shape recovery
- Reconstruct a partial 3D surface using the PSM method

